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Abstract
We have measured the effective mass, m, and Landé g factor in very dilute
two-dimensional electron systems in silicon. Two independent methods have
been used: (i) measurements of the magnetic field required to fully polarize
the electrons’ spins and (ii) analysis of the Shubnikov–de Haas oscillations.
We have observed a sharp increase of the effective mass with decreasing
electron density while the g factor remains nearly constant and close to its
value in bulk silicon. The corresponding strong rise of the spin susceptibility
χ ∝ gm may be a precursor of a spontaneous spin polarization; unlike in the
Stoner scenario, it originates from the enhancement of the effective mass rather
than from the increase of g factor. Furthermore, using tilted magnetic fields,
we have found that the enhanced effective mass is independent of the degree
of spin polarization and, therefore, its increase is not related to spin exchange
effects, in contradiction with existing theories. Our results show that the dilute
2D electron system in silicon behaves well beyond a weakly interacting Fermi
liquid.

PACS numbers: 71.30.+h, 73.40.Qv, 71.18.+y

1. Introduction

At sufficiently low electron densities, two-dimensional (2D) electron systems become
strongly correlated, because the kinetic energy is overpowered by energy of electron–electron
interactions. The strength of the interactions is usually characterized by the ratio between
the Coulomb energy and the Fermi energy, rs = Ec/EF, which, assuming that the effective
electron mass is equal to the band mass, in the systems with single-valley spectrum reduces
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to the Wigner–Seitz radius, 1/(πns)
1/2aB (here ns is the electron density and aB is the Bohr

radius in semiconductor). There are several suggested candidates for the ground state of
the system, for example, (i) Wigner crystal characterized by spatial and spin ordering [1],
(ii) ferromagnetic Fermi liquid with spontaneous spin ordering [2] and (iii) paramagnetic
Fermi liquid [3]. In the strongly-interacting limit (rs � 1), no analytical theory has been
developed to date. According to numeric simulations [4], Wigner crystallization is expected
in a very dilute regime, when rs reaches approximately 35. The refined numeric simulations
[5] have predicted that prior to the crystallization, in the range of the interaction parameter
25 < rs < 35, the ground state of the system is a strongly correlated ferromagnetic Fermi
liquid. A paramagnetic Fermi liquid is realized at yet higher electron densities when the
interactions are relatively weak (rs ∼ 1). The effective mass, m, and Landé g factor within
the Fermi liquid theory are renormalized due to spin exchange effects, with renormalization
of the g factor being dominant compared to that of the effective mass [6]. Alternatively, near
the onset of Wigner crystallization, strong increase of the effective mass is expected [7, 8].

Recently, there has been a lot of interest in the electron properties of dilute 2D systems due
to the observation of an unexpected metal–insulator transition (MIT) in zero magnetic field,
strong metallic temperature dependence of the resistance in these systems and a giant positive
magnetoresistance in a magnetic field parallel to the 2D plane (for a review, see [9]). The most
pronounced effects have been observed in high-mobility silicon metal-oxide-semiconductor
field-effect transistors (MOSFETs), with the low-temperature drop of the resistance reaching
an order of magnitude and magnetoresistance exceeding five orders of magnitude. Significant
progress has been recently made in understanding the metallic behaviour of the resistivity and
its suppression by a magnetic field [10, 11]; the metal–insulator transition, however, still lacks
adequate theoretical description.

In this paper, which summarizes results obtained in [12–16], we report measurements
of the effective mass, m, and Landé g factor in a wide range of electron densities including
the immediate vicinity of the MIT. We have used two independent methods to determine
these parameters. In the first method, we have studied low-temperature magnetotransport in
a parallel magnetic field. It turns out that the magnetic field, Bc, required to fully polarize
electron spins, is a strictly linear function of the electron density: Bc ∝ (ns − nχ) where nχ

is some finite electron density close to the critical electron density nc for the B = 0 metal–
insulator transition. Vanishing Bc points to a sharply increasing spin susceptibility, χ ∝ gm,
and gives evidence in favour of the spontaneous spin polarization at a finite electron density.
(Similar conclusion about possible spontaneous spin polarization in the dilute 2D electron
system in silicon has been reached in [17].) Comparing our data for zero-field resistivity with
the recent theory [10], we extract the values of m and g separately. It turns out that it is the
value of the effective mass that becomes strongly (by more than a factor of 3) enhanced with
decreasing electron density, while the g factor remains nearly constant and close to its value
in bulk silicon. In the second method, we have determined the effective mass by analysing
temperature dependence of the weak-field Shubnikov–de Haas (SdH) oscillations and found
good agreement with the data obtained by the first method. Furthermore, using tilted magnetic
fields, we find that the value of the effective mass does not depend on the degree of spin
polarization, which points to a spin-independent origin of the effective mass enhancement.
This is in clear contradiction with existing theories [6–8].

2. Samples and experimental technique

Measurements have been made in a rotator-equipped Oxford dilution refrigerator with a base
temperature of ≈30 mK on low-disordered (100)-silicon samples similar to those previously
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Figure 1. Shubnikov–de Haas oscillations in the Si MOSFET at T ≈ 40 mK (a) at a relatively
high electron density ns = 5.43 × 1011 cm−2 and (b) at low electron density ns = 9.3 ×
1010 cm−2. The minima of the resistance at Landau level filling factors ν = 6 and 10 are shown
on an expanded scale in the inset.

used in [18]. Peak electron mobilities in these samples are close to 3 m2 V−1 s−1 at
0.1 K. To minimize the contact resistance, which tends to grow very high at mK
temperatures and low electron density, thin gaps in the gate metallization have been
introduced; this allows for maintaining high electron density near the contacts (about 1.5 ×
1012 cm−2) regardless of its value in the main part of the sample. These gaps are narrow enough
(<100 nm) for the given gate-oxide thickness to provide a smoothly descending electrostatic
potential from the high-density part to the low-density part. The resistance, Rxx , has been
measured by a standard four-terminal technique at a low frequency (0.4 Hz) to minimize
the out-of-phase signal. Excitation current has been kept low (0.1–0.2 nA) to ensure that
measurements are taken in the linear regime of response; the power generated in the samples
has been maintained under 10−14 W. To verify that the electrons are not overheated, we have
studied the temperature dependence of the amplitude of the SdH oscillations; the latter has
been found to follow the theoretical curve down to temperatures less than 50 mK (for more on
this, see below).

3. Experimental results

We start by showing a low-temperature longitudinal magnetoresistance Rxx in a perpendicular
magnetic field B⊥ for a relatively high (figure 1(a)) and relatively low (figure 1(b)) electron
densities. At the high density, minima of SdH oscillations correspond to ‘cyclotron’ filling
factors4, some of which are marked by arrows. Indeed, the energy splittings �s = gµBB⊥ at
‘spin’ filling factors, ν = 2, 6, 10, . . . = 4i − 2, in high-density Si MOSFETs are known to
be much smaller than the splittings �c = h̄�c − gµBB⊥ at ‘cyclotron’ filling factors, ν = 4,
8, 12, . . . = 4i, disregarding the odd ν valley splitting which is small (here �c = eB⊥/mc

is the cyclotron frequency and i = 1, 2, 3, . . . ). The behaviour of the sample at a relatively
high electron density is thus rather ordinary. In contrast, at low electron density ( just above
the metal–insulator transition which in this sample occurs at ns = nc = 8 × 1010 cm−2),
the magnetoresistance looks quite different [19]. The resistance minima are seen only at
ν = 2, 6 and 10 (see the inset); there is also a minimum at ν = 1 (not shown in the figure)
4 In silicon MOSFETs, ‘cyclotron’ gaps correspond to ν = 4, 8, 12, 16, . . . while ‘spin’ gaps correspond to ν = 2,
6, 10, 14, . . . due to a two-fold valley degeneracy in this system.
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Figure 2. Evolution of the Shubnikov-de Haas oscillations with electron density in two ranges of
filling factors: (a) 3 < ν < 9 and (b) 8 < ν < 17; T ≈ 40 mK. The curves are vertically shifted
for clarity.

corresponding to the valley splitting. There are neither dips nor other anomalies at magnetic
fields corresponding to ν = 4, 8 or 12 where cyclotron minima are expected.

Figure 2 shows how the resistance minima corresponding to the cyclotron splittings
gradually disappear as the electron density is reduced. At the highest electron densities (the
lower curves), deep resistance minima near even filling factors are seen (ν = 4, 6 and 8 in
figure 2(a); ν = 10, 12 and 16 in figure 2(b)), and a shallow minimum is visible at ν = 14
in figure 2(b). As ns is reduced, the minima at ν = 4, 8, 12 and 16 become less deep, and at
the lowest electron densities (the upper curves), neither of them is seen any longer, and only
minima at ν = 6, 10 and 14 remain.

Our results thus show that as one approaches the metal–insulator transition, the energy gaps
at ‘cyclotron’ filling factors become gradually smaller than those at ‘spin’ filling factors and
eventually vanish. The condition for vanishing �c is gµBB⊥ = h̄�c (within the uncertainty
associated with the broadening of the energy levels), or gm/2me = 1, which is higher by more
than a factor of 5 than the ‘normal’ value of this ratio, gm/2me = 0.19. Therefore, the spin
susceptibility χ ∝ gm is strongly enhanced near the MIT.

One could attempt to link the observed behaviour to a many-body enhancement of spin
gaps specific for a perpendicular magnetic field [20]. However, the disappearance of the
cyclotron splittings in a wide range of magnetic fields would require an enhanced g factor
which is independent of magnetic field, in contradiction with [20]. On the other hand, our
results are consistent with the suggestion [21] that the effective g factor is nearly field-
independent and approximately equal to its many-body enhanced zero-field value. To probe
this conjecture, we have studied the parallel-field magnetotransport in a wide range of electron
densities.

Typical curves of the low-temperature magnetoresistance ρ(B‖) in a parallel magnetic
field are displayed in figure 3. Note that the thickness of the 2D electron system in Si
MOSFETs is small compared to the magnetic length in accessible fields, and, therefore, the
parallel field couples largely to the electrons’ spins while the orbital effects are suppressed
[22, 23]. The resistivity increases with field until it saturates at a constant value above
a certain density-dependent magnetic field. According to [21, 24], the saturation of the
magnetoresistance indicates the onset of a complete spin polarization. In the vicinity of the
metal–insulator transition, the magnetoresistance is strongly T-dependent down to the lowest
achievable temperatures. As one moves away from the transition, however, the temperature
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Figure 4. Scaled curves of the normalized magnetoresistance at different ns versus B‖/Bc. The
electron densities are indicated in units of 1011 cm−2. Also shown by a dashed line is the normalized
magnetoresistance calculated in [26].

dependences saturate at very low temperatures. The data shown below are obtained in this
low-temperature limit where the magnetoresistance becomes temperature-independent.

In figure 4, we show how the normalized magnetoresistance, measured at different
electron densities, collapses onto a single curve when plotted as a function of B‖/Bc.
The scaling parameter, Bc, has been normalized to correspond to the magnetic field at
which the magnetoresistance saturates (within the accuracy with which the latter can be
determined). The observed scaling is remarkably good for B‖/Bc � 0.7 in the electron
density range 1.08 × 1011–1012 cm−2, although with increasing ns, the scaled experimental
data occupy progressively shorter intervals on the resulting curve. Both at B‖/Bc > 0.7
and outside the indicated range of electron densities, the scaled data start to noticeably
deviate from the universal curve. In particular, the scaling breaks down when one approaches
(ns < 1.3nc) the metal–insulator transition which in this sample occurs at zero magnetic field
at nc = 8 × 1010 cm−2. This is not surprising as the magnetoresistance near nc depends
strongly on temperature, as discussed above. We note that the observed scaling dependence
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of 1/A∗(ns) (see equation (1)) and Bc(ns) (open and solid circles, correspondingly) is shown in
the inset. The dashed lines are linear fits which extrapolate to the critical electron density for the
metal–insulator transition.

is described reasonably well by the theoretical dependence of ρ/ρ(0) on the degree of spin
polarization ξ = gmµBB‖/πh̄2ns = B‖/Bc predicted by the recent theory [25].

In figure 5, Bc is plotted versus ns. With high accuracy, Bc is proportional to the deviation
of the electron density from its critical value, i.e., to (ns − nc), over a wide range of electron
densities. In other words, the field, at which the magnetoresistance saturates, tends to vanish at
nc (see also [15, 26]). We emphasize that our procedure provides high accuracy for determining
the behaviour of the field of saturation with electron density, i.e., the functional form of Bc(ns),
even though the absolute value of Bc is determined not so accurately. Note that at ns above
2.4 × 1011 cm−2, the saturation of the resistance is not reached in our magnetic field range;
still, the high precision of the collapse of the high-density experimental curves onto the same
scaling curve as the low-density data allows us to draw conclusions about the validity of the
obtained law Bc(ns) over a much wider range of electron densities.

The observed tendency of Bc to vanish at a finite electron density is consistent with the
strong increase of the spin susceptibility χ ∝ gm [12, 15, 27] and gives evidence in favour
of a spontaneous spin polarization at nχ ≈ nc. In principle, either g or m (or both) may be
responsible for the strong increase of the spin susceptibility. As has already been mentioned,
within the Fermi liquid theory, both the effective mass and g factor are renormalized due
to spin exchange effects, with renormalization of the g factor being dominant compared to
that of the effective mass. In contrast, the dominant increase of the effective mass follows
from an alternative description of the strongly-interacting electron system beyond the Fermi
liquid approach [7, 8]. To separate g and m, we have measured the temperature-dependent
conductivity in zero magnetic field and analysed the data in the spirit of recent theory [10].
According to this theory, σ is a linear function of temperature,

σ(T )

σ0
= 1 − A∗kBT (1)

where the slope, A∗, is determined by the interaction-related parameters: the Fermi liquid
constants, Fa

0 and F s
1 ,

A∗ = −
(
1 + αFa

0

)
gm

πh̄2ns
. (2)
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Figure 6. The temperature dependence of the normalized conductivity at different electron
densities (indicated in units of 1011 cm−2) above the critical electron density for the metal–insulator
transition. The dashed lines are fits of the linear interval of the dependence.

The factor α is equal to 8 in our case [28]. This theoretical relation allows us to determine the
many-body enhanced g factor and mass m separately using the data for the slope A∗ and the
product gm.

Typical dependences of the normalized conductivity on temperature, σ(T )/σ0, are
displayed in figure 6 at different electron densities above nc; the value σ0, which has been used
to normalize σ , was obtained by extrapolating the linear interval of the σ(T ) dependence to
T = 0. As long as the deviation |σ/σ0 − 1| is sufficiently small, the conductivity σ increases
linearly with decreasing T in agreement with equation (1), until it saturates at the lowest
temperatures. As seen from the figure, the linear interval of the dependence is wide enough to
make a reliable fit.

The ns dependence of the inverse slope 1/A∗, extracted from the σ(T ) data, is shown in
the inset to figure 5 by open circles. Over a wide range of electron densities, the values 1/A∗

and µBBc turn out to be close to each other. The low-density data for 1/A∗ are approximated
well by a linear dependence which extrapolates to the critical electron density nc in a similar
way to the behaviour of the polarization field Bc.

In figure 7, we show the so-determined values g/g0 and m/mb as a function of the
electron density (here g0 = 2 is the g factor in bulk silicon, mb is the band mass equal to
0.19me, and me is the free electron mass). In the high ns region (relatively weak interactions),
the enhancement of both g and m is relatively small, both values slightly increasing with
decreasing electron density in agreement with earlier data [29]. Also, the renormalization
of the g factor is dominant compared to that of the effective mass, which is consistent with
theoretical studies [6].

In contrast, the renormalization at low ns (near the critical region), where rs � 1, is much
more striking. As the electron density is decreased, the renormalization of the effective mass
overshoots abruptly while that of the g factor remains relatively small, g ≈ g0, without tending
to increase. Hence, the current analysis indicates that it is the effective mass, rather than the
g factor, that is responsible for the drastically enhanced gm value near the metal–insulator
transition.

Since the procedure for extracting g and m described above relies on theoretically
calculated functional form for the slope A∗ [10], we have performed independent
measurements of the effective mass based on the temperature analysis of the amplitude,
A, of the weak-field (sinusoidal) SdH oscillations. A typical temperature dependence of A

for the normalized resistance, Rxx/R0 (where R0 is the average resistance), is displayed in
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of T for the ν = 10 data is divided by the factor of 1.4. The solid line is a fit using equation (3).

figure 8. To determine the effective mass, we use the method of [30] extending it to much
lower electron densities and temperatures. We fit the data for A(T ) using the formula

A(T ) = A0
2π2kBT/h̄�c

sinh(2π2kBT/h̄�c)
(3)

where A0 = 4 exp(−2π2kBTD/h̄�c) and TD is the Dingle temperature. As the latter is related
to the level width through the expression TD = h̄/2πkBτ (where τ is the elastic scattering time)
[29], damping of the SdH oscillations with temperature may be influenced by temperature-
dependent τ . We have verified that in the studied low-temperature limit for electron densities
down to ≈1 × 1011 cm−2, possible corrections to the mass value caused by the temperature
dependence of τ (and hence TD) are within our experimental uncertainty which is estimated at
about 10%. Note that the amplitude of the SdH oscillations follows the calculated curve down
to the lowest achieved temperatures, which confirms that the electrons were in a good thermal
contact with the bath and were not overheated. The fact that the experimental dependence A(T )

follows the theoretical curve justifies applicability of equation (3) to this strongly-interacting
electron system.
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The so-determined effective mass is shown in the inset to figure 7. In quantitative
agreement with the results obtained by the alternative method described above (the dotted line),
the effective mass sharply increases with decreasing ns. The agreement between the results
obtained by two independent methods adds confidence in our results and conclusions. Our data
are also consistent with the data for spin and cyclotron gaps obtained by magnetocapacitance
spectroscopy [31].

A strong enhancement of m at low electron densities may originate from spin effects
[6–8]. With the aim of probing a possible contribution from the spin effects, we have introduced
a parallel magnetic field component to align the electrons’ spins. In figure 9, we show the
behaviour of the effective mass with the degree of spin polarization, p = (B2

⊥ + B2
‖ )

1/2/Bc.
As seen from the figure, within our accuracy, the effective mass m does not depend on p.
Therefore, the m(ns) dependence is robust, the origin of the mass enhancement has no relation
to the electrons’ spins and exchange effects5.

4. Discussion

Under the conditions of our experiments, the interaction parameter, rs, is larger by a factor
of 2m/mb than the Wigner–Seitz radius and reaches approximately 50, which is above the
theoretical estimate for the onset of Wigner crystallization. As has already been mentioned,
two approaches to calculate the renormalization of m and g have been formulated. The first
one exploits the Fermi liquid model extending it to relatively large rs. Its main outcome is that
the renormalization of g is large compared to that of m [6]. In the limiting case of high rs,
one may expect a divergence of the g factor that corresponds to the Stoner instability. These
predictions are in obvious contradiction to our data: (i) the behaviour of the 2D dilute system
in the regime of the strongly enhanced susceptibility—close to the onset of spontaneous spin
polarization and Wigner crystallization—is governed by the effective mass, rather than the g

factor, through the interaction parameter rs and (ii) the insensitivity of the effective mass to
spin effects also cannot be accounted for.

The other theoretical approach either employs analogy between a strongly interacting
2D electron system and He3 [7] or applies Gutzwiller’s variational method [33] to

5 In principle, the exchange effects can also originate from the isospin degree of freedom in bivalley (100)-Si
MOSFETs. The valley origin of the strongly enhanced effective mass is not very likely, as inferred from a similar
increase of the ratio of the spin and the cyclotron splittings at low ns in the 2D electron system in GaAs [32].
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Si MOSFETs [8]. It predicts that near the crystallization point, the renormalization of m
is dominant compared to that of g and that the effective mass tends to diverge at the transition.
Although the sharp increase of the mass is in agreement with our findings, it is the expected
dependence of m on the degree of spin polarization that is not confirmed by our data: the
model of [7] predicts that the effective mass should increase with increasing spin polarization,
whereas the prediction of the other model [8] is the opposite.

Thus, the existing theories fail to explain our finding that in a dilute 2D electron system the
effective mass is strongly enhanced and does not depend on the degree of spin polarization.
The fact that the spin exchange is not responsible for the observed mass enhancement reduces
the chances for the occurrence of the ferromagnetic Fermi liquid prior to the Wigner
crystallization. However, should the spin exchange be small, the spin effects may still come
into play closer to the onset of Wigner crystallization where the Fermi energy may continue
dropping as caused by mass enhancement.

In summary, we have found that in very dilute two-dimensional electron systems in
silicon, the effective mass sharply increases with decreasing electron density, while the g

factor remains nearly constant and close to its value in bulk silicon. The enhanced effective
mass does not depend on the degree of the spin polarization and, therefore, its increase is not
related to spin exchange effects, in contradiction with existing theories. The corresponding
strong rise of the spin susceptibility may be a precursor of a spontaneous spin polarization;
unlike in the Stoner scenario, the latter originates from the enhancement of the effective mass
rather than the increase of the g factor. Our results show that the dilute 2D electron system in
silicon behaves well beyond the weakly interacting Fermi liquid.
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